Транспирация

Содержание:

Функция Транспирации

Транспирация происходит потому, что растения потребляют больше воды, чем им нужно в данный момент времени. Это способ избавиться от лишней воды. Когда вода удаляется с завода, она может легче получить доступ к углекислому газу, в котором она нуждается фотосинтез, Кроме того, растения могут использовать транспирацию как метод охлаждения.

Транспирация используется для описания специфического действия воды, испаряющейся из растения, но слово транспирация также используется для описания того, как вода движется через растения. Когда вода проникает в растение через корни, она вытягивается через ксилема ткань в стволе растения к листьям растения за счет капиллярного действия и сплоченности молекул воды. Когда вода достигает устьиц, которые представляют собой небольшие отверстия в листьях, она испаряется из-за диффузия ; содержание влаги в воздухе ниже, чем влага в лист Таким образом, вода естественным образом вытекает в окружающий воздух для выравнивания концентраций.

Транспирация имеет побочные эффекты для других организмов в экосистема, Это помогает поддерживать определенный уровень влажности в окружающей среде, в зависимости от количества и типов растений в окружающей среде. Это непреднамеренно позволяет некоторым организмам выживать лучше, чем другие, в зависимости от уровня влажности, который им необходим для процветания.

Листорасположение

Листорасположение, или филлотаксис – это порядок размещения листьев на оси побега. Различают несколько основных вариантов листорасположения:

  • спиральное, или рассеянное (очерёдное) – на каждом узле расположен один лист и основания листьев одной оси последовательно можно соединить условной спиральной линией: растянутой, если стебель удлинённый, и плоскостной, если он укороченный;
  • двурядный вид листорасположения, который можно рассматривать как частный случай спирального. Отражает маятниковую симметрию деятельности апекса. На каждом узле находится один лист, охватывающий основанием всю или почти всю окружность. Средняя линия всех листьев лежит в одной вертикальной плоскости;
  • мутовчатое – появляется, если на одном уровне закладывается несколько листовых примордиев, образующих общий узел. Нередко при близком изучении оказывается, что каждый лист мутовки имеет собственный узел, но они сильно сближены;
  • супротивное листорасположение – частный случай мутовчатого, когда на одном узле образуется два листа точно напротив друг друга. Часто такое расположение бывает накрест супротивным, т. е. плоскости соседних пар листьев являются взаимно перпендикулярными.

Листорасположение

Хотя тип расположения листьев – это наследственный признак, однако он зависит от среды обитания и в процессе роста растения может меняться. Благодаря неравномерности роста стебель может скручиваться вокруг своей оси. Для сохранения симметрии размещения листьев по стеблю их черешки могут изгибаться, поворачивая листья так, что по их расположению уже не удаётся определить исходную формулу филлотаксиса.

Особенно ярко это выражается на листовой мозаике. При этом листья выстраиваются горизонтально, подставляя пластинки свету, так что становятся одной плоскостью.  Листовая мозаика способствует максимальному использованию рассеянного света. Её можно наблюдать на горизонтальных ветвях в кроне липы, на побегах плюща, герани, подорожника, табака и т.д.

Листовая мозаика

Ход испарения в зависимости от времени суток

В зависимости от времени суток, испарение проходит по-разному. Утром испарение происходит крайне вяло. Но как только солнце поднимается по небосводу все выше — влажность в воздухе уменьшается, и процесс испарения усиливается. Ближе к вечеру этот процесс замедляется, а ночью замедляется настолько сильно, насколько это возможно.

Наблюдать правильный процесс «дыхания» растений можно наблюдать только в хорошую погоду и безоблачном небе. Обычно, в сутки транспирация имеет два пика испарения, в самый жаркий час испаряется самый минимум. Устьица закрываются а растения высушиваются.

Насыщенный пар

Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.

Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.

На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.

Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Ипомея — что за растение, описание, сорта

Интенсивность испарения

Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.

Интенсивность испарения зависит от следующих факторов:

  • Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
  • Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
  • Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
  • Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.

Кажется, правильнее говорить «скорость испарения» вместо интенсивности? Или нет?

Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.

Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.

По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.

Показание к применению

Природа и наука

Индейцы Майя изготавливали таким образом некое подобие мячика. Однако, каучук в чистом виде имеет несколько физических свойств, которые надолго отложили его массовое использование по миру.

От высоких температур каучук становится липким, может растекаться, издавая довольно неприятный запах. При низких температурах промерзает, дает трещины.

Но наука шла вперед, ученый химик Чарльз Нельсон Гудьира провел опыт для улучшения физических свойств каучука. Взаимодействие с химическим элементом серой привело полученный полимер к повышенной прочности, эластичности, свойствами звукоизоляции, водонепроницаемости, непроводимости электричества и тепла. Этот эксперимент открыл латексу дверь в мировые отрасли.

Состав похожих продуктов

  • Мясо акулы жареное

  • Анчоусы консервированные (в масле)

  • Горбуша запечённая

  • Горбыль жареный

  • Групер запечённый

  • Желтохвост (лакедра) запечённый

  • Зубатка запечённая

  • Камбала жареная

  • Карп запечённый

  • Кета запечённая

  • Кефаль запечённая

  • Корюшка жареная

  • Луциан (берикс) запечённый

  • Махи-махи (корифена) запечённая

  • Менёк запечённый

  • Мерланг запечённый

  • Минтай запечённый

  • Мольва запечённая

  • Налим запечённый

  • Нерка запечённая

  • Окунь морской (красный) запечённый

  • Окунь речной запечённый

  • Омуль запечённый

  • Осётр запечённый

  • Палтус запечённый

  • Масляная рыба (эсколар) копчёная

  • Молочная рыба (ханос) запечённая

  • Рыба-меч запечённая

  • Сардина консервированная в масле

  • Сельдь запечённая

  • Сельдь копчёная

  • Сельдь солёная

  • Сёмга запечённая

  • Сибас запечённый

  • Скумбрия запечённая

  • Скумбрия солёная

  • Сом жареный

  • Ставрида консервированная

  • Судак запечённый

  • Терпуг запечённый

  • Тилапия запечённая

  • Треска запечённая

  • Тунец консервированный в собственном соку

  • Угорь запечённый или копчёный

  • Форель запечённая

  • Чавыча запечённая

  • Морской чёрт приготовленный

  • Щука приготовленная

Лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

  1. По окружности устий расположены замыкающие клетки.
  2. При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Факторы, влияющие на испарение

К показателям внешней среды относятся:

  1. Температура воздуха и почвы — при их повышении транспирация усиливается.
  2. Влажность воздуха и почвы — увлажнение воздуха снижает интенсивность испарения.
  3. Освещенность — нагревает листву, содержащую хлорофилл, увеличивает потерю влаги. Устьица на свету открываются шире.
  4. Скорость ветра — с возрастанием циркуляции воздуха испарение увеличивается.
  5. Содержание углекислого газа CO2 — его влияние неоднозначно. Доказано, что недостаток влаги и жара угнетают растения даже при перенасыщении воздуха CO2.

Анатомические, биологические особенности листа относятся к внутренним факторам:

  • площадь — с широкого листа испаряется больше влаги, чем с узкого;
  • габариты растения, количество устьиц — обширная площадь листвы обеспечивает усиленное испарение;
  • восковая кутикула, пушок уменьшают расход воды.

Элементы, участвующие в перемещении влаги — корни, ксилема, капилляры, жилки, устьица.

Влага может испаряться с обеих сторон листа.

Ссылки [ править ]

  1. Benjamin Cummins (2007), биологических наук (3 -е изд.), Freeman, Скотт, стр. 215
  2. ↑ Taiz, Lincoln (2015). Физиология и развитие растений . Сандерленд, Массачусетс: Sinauer Associates, Inc. стр. 101. ISBN 978-1-60535-255-8.
  3. Фриман, Скотт (2014). Биологические науки . Соединенные Штаты Америки: Пирсон. С. 765–766. ISBN 978-0-321-74367-1.
  4. Simon, EJ, Dickey, JL, & Reece, JB (2019). Эссенциальная биология Кэмпбелла. 7-й Нью-Йорк: Пирсон
  5. ↑ Graham, Linda E. (2006). Биология растений . Река Аппер Сэдл, Нью-Джерси 07458: Pearson Education, Inc., стр. 200–202. ISBN 978-0-13-146906-8.
  6. Мелландер, Пер-Эрик; Епископ, Кевин; Лундмарк, Томас (28 июня 2004 г.). «Влияние температуры почвы на транспирацию: изменение масштаба участка в молодом насаждении сосны обыкновенной». Экология и управление лесами . 195 (1): 15–28. DOI . ISSN .
  7. Мартин, J .; Леонард, В .; Стэмп, Д. (1976), Принципы выращивания полевых культур (3-е изд.), Нью-Йорк: Macmillan Publishing Co., ISBN 978-0-02-376720-3
  8. Ясечко, Скотт; Sharp, Zachary D .; Гибсон, Джон Дж .; Биркс, С. Жан; Йи, Йи; Фосетт, Питер Дж. (3 апреля 2013 г.). «В наземных водных потоках преобладает транспирация». Природа . 496 (7445): 347–50. Bibcode . DOI . PMID . S2CID .
  9. Evaristo, Jaivime; Ясечко, Скотт; Макдоннелл, Джеффри Дж. (2015-09-03). «Глобальное отделение транспирации растений от грунтовых вод и речного стока». Природа . 525 (7567): 91–94. Bibcode . DOI . ISSN . PMID . S2CID .
  10. Боуэн, Габриэль (2015-09-03). «Гидрология: многоотраслевая экономика почвенных вод». Природа . 525 (7567): 43–44. Bibcode . DOI . ISSN . PMID . S2CID .
  11. Чжан, Юн-Цзян (декабрь 2016 г.). . Физиология растений . 172 (4): 2261–2274. DOI . PMC . PMID .
  12. ↑ Hochberg, Uri (июнь 2017). . Физиология растений . 174 (2): 764–775. DOI . PMC . PMID .
  13. ^ Холбрук, Мишель (май 2001 г.). . Физиология растений . 126 (1): 27–31. DOI . PMC . PMID .
  14. Tiaz, Lincoln (2015). Физиология и развитие растений . Массачусетс: Sinauer Associates, Inc., стр. 63. ISBN 978-1605352558.

Кавитация [ править ]

Чтобы поддерживать градиент давления, необходимый для того, чтобы растение оставалось здоровым, оно должно постоянно поглощать воду своими корнями. Они должны быть в состоянии удовлетворить потребности в воде, потерянной из-за испарения. Если растение не способно приносить достаточно воды, чтобы оставаться в равновесии с транспирацией, происходит событие, известное как кавитация . Кавитация — это когда растение не может обеспечить свою ксилему достаточным количеством воды, поэтому вместо того, чтобы заполняться водой, ксилема начинает заполняться водяным паром. Эти частицы водяного пара объединяются и образуют засоры в ксилеме растения. Это мешает растению транспортировать воду по своей сосудистой системе. Нет очевидной картины того, где кавитация возникает по всей ксилеме растения. Если не предпринять эффективных мер по уходу, кавитация может привести к тому, что растение достигнет точки постоянного увядания и погибнет. Следовательно, у растения должен быть метод, с помощью которого можно удалить эту кавитационную закупорку, или он должен создать новое соединение сосудистой ткани по всему растению. Растение делает это, закрывая устьица на ночь, что останавливает поток транспирации. Это затем позволяет корням создавать давление более 0,05 МПа, и это способно разрушить закупорку и наполнять ксилему водой, повторно соединяя сосудистую систему. Если растение не может создать достаточное давление, чтобы устранить засорение, оно должно предотвратить распространение засора с помощью груши, а затем создать новую ксилему, которая может повторно соединить сосудистую систему растения.

Ученые начали использовать магнитно-резонансную томографию(МРТ) для неинвазивного мониторинга внутреннего состояния ксилемы во время транспирации. Этот метод визуализации позволяет ученым визуализировать движение воды по всему растению. Он также может видеть, в какой фазе находится вода в ксилеме, что позволяет визуализировать события кавитации. Ученые смогли увидеть, что в течение 20 часов солнечного света более 10 сосудов ксилемы начали заполняться частицами газа, становящимися кавитацией. Технология МРТ также позволила увидеть процесс восстановления этих ксилемных структур на заводе. После трех часов в темноте было замечено, что сосудистая ткань пополнилась жидкой водой. Это стало возможным, потому что в темноте устьица растения закрыты и транспирация больше не происходит.Когда транспирация прекращается, кавитационные пузыри разрушаются давлением, создаваемым корнями. Эти наблюдения предполагают, что МРТ способны контролировать функциональное состояние ксилемы и позволяют ученым впервые просматривать события кавитации.

Транспирация

Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.

Транспирация выполняет в растении следующие основные функции:

это верхний двигатель тока воды,

это защита от перегрева,

это нормализация функционирования коллоидных систем клеток листа.

Показатели транспирации

Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.

Интенсивность транспирации — это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:

Тр= С г Н2О _

r м2.1час,

где Тр — интенсивность транспирации, С — градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, r — сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).

Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.

Устьичное диффузионное сопротивление зависит от степени открытия устьиц.

Кутикулярное диффузионное сопротивлениезависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.

Продуктивность транспирации — это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.

Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.

Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.

Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.

Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.

Значение транспирации

Физиологический процесс передвижения и испарения воды растениями в биологии называют транспирацией. Механизм этого явления упрощенно выглядит так:

Упрощенный механизм движения воды в растении.

Под воздействием неодинакового осмотического давления вода с минеральными, органическими веществами по капиллярам растительной ткани (ксилемы) перемещается из почвы к наземным органам. Движение влаги на свету протекает непрерывно, обеспечивая рост, развитие, обмен веществ организма. Основной орган транспирации — лист. Через устьица он испаряет влагу, пропускает углекислый газ CO2, необходимый для фотосинтеза.

Через устьица растение теряет до 90% влаги.

Виды транспирации

Формы и пути передвижения влаги:

  • устьичная — испарение из открытых отверстий, составляет больше 90% потерь воды, интенсивность пропорциональна числу устьиц;
  • кутикулярная — расход воды через восковую кутикулу. Его доля 5–10%, толстая пленка препятствует транспирации;
  • лентикулярная — испарение из почек, чечевичек на коре ветвей, побегов. Роль в водном обмене невелика.

викторина

1. Какой тип транспирации НЕ является?A. Лентикулярная транспирацияB. Мезархальная транспирацияC. Кутикулярная транспирацияD. Стоматальная транспирация

Ответ на вопрос № 1

В верно. Лентикулярная, кутикулярная и устная транспирация – это формы транспирации, при которых вода теряется через линзу, кутикулу и устьицу соответственно. Мезархальная транспирация не существует. Месарх описывает путь развития ксилемы.

2. Когда температура повышается, что происходит со скоростью транспирации?A. Транспирация увеличивается.B. Транспирация уменьшается.C. Транспирация остается с той же скоростью.

Ответ на вопрос № 2

верно. Когда температура увеличивается, транспирация также увеличивается. Растения больше открывают свои устьицы в горячих средах, так что вода может испаряться, что охлаждает растение. Поэтому растения в горячих средах обычно переносят больше, чем растения в более холодных средах.

3. Когда _____________ увеличивается, скорость транспирации уменьшается.A. ветерB. Влага в почвеC. Влага в воздухеD. температура

Ответ на вопрос № 3

С верно. Когда относительная влажность высокая, транспирация уменьшается. Меньше воды испаряется в окружающий воздух, если в воздухе больше влаги. Когда влажность низкая, а воздух сухой, транспирация увеличивается. Вода проникает в воздух через диффузию; он перемещается из области с более высокой концентрацией (лист) в область с более низкой концентрацией (воздух).

Подготовка к хранению

При сборе урожая очень важно соблюдать сроки. Это напрямую влияет на лежкость картошки

После сбора урожая важно, чтобы картофель полежал на солнце, процесс имеет название – световая обработка.

Для этого картофель разлаживают под прямыми солнечными лучами на несколько дней. После отправляют на хранение в выбранное место.

Картофель нужно подготавливать сразу после сбора урожая. Для этого следует соблюдать ряд рекомендаций:

  • очистить клубни от почвы (мыть не нужно);
  • просушить клубни под солнцем или в хорошо проветриваемом сухом помещении;
  • отобрать здоровые плоды и выбросить зараженные, с трещинами, гнилые;
  • поместить в контейнер для хранения.

Чем обработать картофель перед закладкой

Перед отправкой на хранение клубни картошки можно обработать раствором медного купороса – так они будут лучше храниться. В 10 л воды следует растворить 2 г препарата. Средством нужно хорошо обрызгать плоды и дать им просохнуть.

Препятствовать возникновению гнили поможет травяной настой. На 10 л воды берут 1,5 кг сныти, 3,5 кг полыни и 750 г листьев табака, настаивают сутки. Этим настоем можно опрыскивать урожай картофеля, расходуя около 100 мл на 25 кг клубней.

Кстати, полынь и сныть, а также другие фитонцидные растения могут защитить картофель от загнивания, даже если их листья просто разложить между клубнями. Делают это таким образом, чтобы на 50 кг урожая картофеля приходилось около 0,5-1 кг травы.

Особенности хранения в разное время года

Выделяют 4 периода лежкости картошки:

  1. Лечебный. Сразу после уборки урожая нужно создать условия для созревания клубней, лечения механических повреждений. В этот период нужно оставить урожай при t12-18C на проветривании на 8-10 дней.
  2. Охлаждения. Вентилировать клубни ночным воздухом до t 1С. Вентиляция проходит в течение 2-3 недель.
  3. Основной – период покоя. Складывают в помещение, где поддерживается температурный режим 2-4С. Раз-два в неделю помещение нужно тщательно проветривать в течение получаса.
  4. Весенний – после начала прорастания картошки. В феврале, когда есть риск прорастания картофеля, нужно устроить ему стрессовое закаливание, снизить t до 1-3С. Так можно сохранить клубни до мая.

Если соблюдать правила, можно значительно продлить лежкость корнеплода.

Описание процесса

На процесс испарения влияют несколько важных факторов. Именно от этих параметров зависит результат процесса и количество получаемой растениями жидкости.

Влияющие на процесс факторы

Интенсивность процесса определяется количеством воды, которое приходится на клетки листьев, а на это состояние влияют природные условия – влажность на улице, температура воздуха, степень освещенности. Чем суше воздух, тем быстрее влага будет покидать листья. А влажность почвы влияет противоположным образом.

Главным фактором нужно считать освещение. Когда листок поглощает свет, его температура растет, а устьица раскрываются. Влияние солнечного света позволяет разграничить организмы на три группы в зависимости от суточного хода процесса.

Первая группа отличается закрытыми устьицами в темное время суток. С рассветом они распахиваются. В течение дня они могут передвигаться, если воды недостаточно. К таким растениями относят злаковые культуры. Вторая группа закрывает устьица днем, а ночью держит открытыми. Это культуры с тонкими листьями: горох, свекла и т. д. Третья группа всегда держит устьица ночью открытыми, а днем их поведение зависит от достатка влага. К ней относят капусту и другую растительность с толстыми листьями.

Стоит отметить, что ночью транспирация замедляется ввиду низкой температуры, отсутствия света и высокой влажности. На протяжении суток наилучшие показатели этого процесса можно наблюдать в обед. Чем ниже опускается солнце, тем медленнее растения избавляются от жидкости. В этом случае имеет место относительная транспирация – отношение испарения с площади листа к количеству времени испарения для такой же площади водной глади.

Влияющие на процесс водного обмена факторы

Регулирование водного баланса

Вы должны знать, что наибольшее количество воды поступает в растительный организм благодаря корням, которые извлекают ее из недр земли. Корневища некоторых культур настолько сильные, что извлекают воду из грунта до нескольких десятков атмосфер. Это в первую очередь касается растений, которые растут в условиях засухи.

Корневище имеет высокую чувствительность, поэтому легко воспринимает содержание влаги в грунте. Это позволяет корням менять вектор роста в соответствии с влажностью среды обитания. Помимо этого, корни у некоторых растений могут извлекать воду с помощью наземных органов. Например, лишайники поглощают жидкость всем своим телом.

После того как вода проникает в растение, она продвигается по его клеткам. По пути она задействует все процессы, необходимые для жизнедеятельности. Определенный объем жидкости растение расходует на фотосинтез, но большинство влаги уходит для наполнения тканей, а также компенсацию потерь от испарения, без которых организм не может нормально существовать.

Испарение жидкости происходит при контакте с воздухом, поэтому это действие затрагивает все части растительности

Для того чтобы правильно отрегулировать водный баланс, важно уравнять поглощаемое количество жидкости и ее расход. Только в этом случае организм будет развиваться гармонично

Нарушения баланса могут быть длительными или зависеть от ситуации. Если с ситуативными колебаниями справиться легко, то длительные процессы протекают с некоторыми трудностями. Например, в процессах водоснабжения могут возникнуть сбои, что чревато гибелью растительности.

Таблица: количество воды для получения 1 т продукции

Как вы поняли, транспирация – это важный процесс, защищающий зелень от негативного влияния солнечного света. Благодаря этому явлению температура листа снижается на десять градусов

Это важно, так как перегрев негативно сказывается на фотосинтезе и разрушает хлоропласты. Именно благодаря такой способности растений к избавлению от влаги они способны не погибать при высокой температуре

Проект: «Транспирационный эксперимент»

 Растения потеют? Не совсем, но они теряют воду. Подсчитайте недостающую массу с помощью этого эксперимента, узнав, как растения испаряют воду через транспирацию.

Что нам понадобится:

  • три небольших тонколистных растения;
  • три небольших широколистных растения;
  • маленькая лейка;
  • линейка;
  • 6 пластиковых пакетов, достаточно больших, чтобы полностью покрыть горшок с растением;
  • малярный скотч.

Ход эксперимента:

  1. Возьмите шесть маленьких растений, три с широкими листьями и три с узкими листьями. Используйте малярный скотч и ручку, чтобы написать на каждом растении его номер.
  2. Поливайте растения, пока вода не будет выливаться из нижней части горшка. Если растения очень сухие или сухая почва, то их тщательно полейте и подождите несколько минут. Затем полейте их снова. Когда вода впитается и горшок наполнится водой, а почва будет мягкая как губка — самое время взвесить растения. Нарисуйте таблицу, которая показывает, сколько весит каждое растение до и после эксперимента.
Название растения Вес До Вес После
№ 1 (Тонкий лист)
  1. Создайте гипотезу, обратившись к этим вопросам:
  • Если вы поливаете растения, а затем ставите их на солнце, что будет с водой?
  • Изменится ли что-нибудь, если вы обернете пластиковым пакетом вокруг основания растения?
  • Как добавление пакета изменит ваш эксперимент?
  1. Поставьте растения на теплое солнце на час, надев на них пакеты, затем снимите их и снова взвесьте каждое растение. Запишите вес в таблицу. Вес отличается?  Остался тем же? Почему вы думаете, что это так? Разные растения потеряли разное количество веса или потеряли примерно одинаковое количество? Почему?
  2. Высушите изнутри каждый пластиковый пакет. Повторно запечатайте их на растениях, верните растения в солнечное место и продолжайте измерять и взвешивать в течение нескольких часов, не добавляя больше воды. Что происходит?

Вывод:

Во время эксперимента по транспирации растения будут терять воду, даже если они находятся в пакетах. Растения с широкими листьями потеряют немного больше воды, чем растения с тонкими листьями, но в зависимости от размера растения это может быть очень сложно измерить.

Почему?

Так как же вода выходит из растений?

В жаркий день, вы можете немного вспотеть. Растения также «потеют». Подобно тому, как мы теряем воду через нашу кожу, растения теряют воду через свои листья.

Хотя вы, возможно, не сможете их увидеть , на листьях растений есть маленькие поры или отверстия. Взгляните на обратную сторону листа под микроскопом, и вы сможете увидеть эти отверстия, которые называются устьицами. Вот, где растения могут терять воду в результате транспирации.

Несмотря на то, что это невидимый процесс, потеря воды из растений в результате транспирации является важной частью круговорота воды, потому что она добавляет много воды в наш воздух. Всего за один год каждый лист на земле может отдать воды весом намного больше своего собственного. Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Вы, вероятно, поливаете растения в своем доме, чтобы они оставались здоровыми — и, если растениям нужна вода, то почему они ее теряют? Транспирация происходит отчасти потому, что растения должны дышать. Растения должны поглощать углекислый газ, и для этого им нужно открыть свои устьица. Когда это происходит — выходит вода. Вы, вероятно, испытывали это и во время своего собственного дыхания: в холодный день вы даже можете видеть воду от своего дыхания, которая создает облачка в воздухе.

Транспирация также помогает растениям, охлаждая их, подобно тому, как пот помогает нам регулировать температуру нашего тела. Транспирация также играет большую роль, помогая воде перемещаться вокруг растения, изменяя давление воды в клетках растения. Это помогает минералам и питательным веществам подниматься вверх от корней растения.

Дальнейшее исследование:

Что будет с растением, если вы обмажете вазелином его листья? Как насчет оливкового масла? Попробуйте смазывать различными веществами листья и взвешивать растение, затем повторите эксперимент. Что будет происходить в теплой комнате? Транспирация будет выражена больше или меньше?

Таксономия и внутривидовая систематика

Механизм транспирации

Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.

Транспирация – это процесс перемещения жидкости по растительному организму и ее испарения наземной частью растения. В транспирации участвуют листья, стебли, цветы, плоды, корневая система растительного организма.

Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.

Механизм действия следующий:

  1. Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
  2. Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.

Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.

У растений различают две разновидности влагообмена:

  • посредством устьиц;
  • через кутикулы.

Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.

Лист растения состоит из:

  1. Клеток эпидермиса, которые образуют основной защитный слой.
  2. Кутикула – восковой (внешний) защитный слой.
  3. Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
  4. Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
  5. Устья – отверстия в эпидермисе, контролирующие газообмен растения.

При устьичной транспирации, процесс испарения происходит в две стадии:

  1. Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
  2. Выделение газообразной влаги в атмосферу через устья эпидермиса.

При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.

Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.

Важно знать, что уровень устичной транспирации составляет от 80 до 90 % от объема испарения всего листа. Именно поэтому такой механизм является основным регулятором интенсивности испарения у растений

Растения Козерога по гороскопу

Гадание по руке

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector